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(the single real root when, b, ¢ are real) and

Ty = —%(A—l—B) —%—i—z’?(A—B)
: S A (5.6.19
Tr3 = —§(A+B) — g —27(14—3)

dny

(in that same case, a complex conjugate pair). Equations (5.6.13)—(5.6.16) are:
arranged both to minimize roundoff error, and also (as pointed out by A.J. Glassman
to ensure that no choice of branch for the complex cube root can result in the:
spurious loss of a distinct root.

If you need to solve many cubic equations with only slightly different coeffi-

cients, it is more efficient to use Newton's meth@8.4).
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CITED REFERENCES AND FURTHER READING:

Weast, R.C. (ed.) 1967, Handbook of Tables for Mathematics, 3rd ed. (Cleveland: The Chemical
Rubber Co.), pp. 130-133.

Pachner, J. 1983, Handbook of Numerical Analysis Applications (New York: McGraw-Hill), §6.1.

McKelvey, J.P. 1984, American Journal of Physics, vol. 52, pp. 269-270; see also vol. 53, p. 775,
and vol. 55, pp. 374-375.

5.7 Numerical Derivatives

Imagine that you have a procedure which computes a fungtief, and now
you want to compute its derivativgé’(z). Easy, right? The definition of the
derivative, the limit ash — 0 of

F(z) ~ w (5.7.)

practically suggests the program: Pick a small vaiyeevaluatef(z + h); you
probably havef(x) already evaluated, but if not, do it too; finally apply equation
(5.7.1). What more needs to be said?

Quite a lot, actually. Applied uncritically, the above procedure is almost
guaranteed to produce inaccurate results. Applied properly, it can be the right wa
to compute a derivative only when the functigns fiercely expensive to compute,
when you already have invested in computjf{g:), and when, therefore, you want
to get the derivative in no more than a single additional function evaluation. In such
a situation, the remaining issue is to choaggroperly, an issue we now discuss:

There are two sources of error in equation (5.7.1), truncation error and roundoff
error. The truncation error comes from higher terms in the Taylor series expansion,
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whence

flz+h) - fz)

! 1 1
- = Ghf" (5.7.3
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5.7 Numerical Derivatives 181

The roundoff error has various contributions. First there is roundoff errdr. in
Suppose, by way of an example, that you are at a poiat 10.3 and you blindly
chooseh = 0.0001. Neitherxz = 10.3 nor z + h = 10.30001 is a number with
an exact representation in binary; each is therefore represented with some fractional
error characteristic of the machine’s floating-point fornagt, whose value in single
precision may be- 10~7. The error in theffective value ofh, namely the difference
between: + h andz as represented in the machine, is therefore on the ordey, of
which implies a fractional error ik of order~ e,z /h ~ 10~2! By equation (5.7.1)
this immediately implies at least the same large fractional error in the derivative.
We arrive at Lesson 1: Always chookao thatr + h andx differ by an exactly
representable number. This can usually be accomplished by the program steps

temp=z+h

(5.7.4

h = temp — x
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Some optimizing compilers, and some computers whose floating-point chips hav
higher internal accuracy than is stored externally, can foil this trick; if so, it is usually
enough to call a dummy subroutinenothing (temp) between the two equations
(5.7.4). This forcesemp into and out of addressable memory.

With A an “exact” number, the roundoff error in equation (5.7.1¢is ~
er|f(x)/h|. Heree, is the fractional accuracy with whicli is computed; for a
simple function this may be comparable to the machine accwacy, ¢,,,, but for a
complicated calculation with additional sources of inaccuracy it may be larger. The
truncation error in equation (5.7.3) is on the ordeegf~ |hf”(x)|. Varyingh to
minimize the sune, + e, gives the optimal choice o,

h~ EJ{/{C SN (5.7.9
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wherez,. = (f/f")'/? is the “curvature scale” of the functigfy or “characteristic
scale” over which it changes. In the absence of any other information, one often
assumes;, = z (except nearr = 0 where some other estimate of the typiaal
scale should be used).

With the choice of equation (5.7.5), the fractional accuracy of the computed
derivative is

quieo
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(er e /1| ~ VEFUS I F) ~ g (5.7.9
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Here the last order-of-magnitude equality assumes fhat’, and f” all share
the same characteristic length scale, usually the case. One sees that the sim
finite-difference equation (5.7.1) gives best only the square root of the machine
accuracye,.

If you can afford two function evaluations for each derivative calculation, then
it is significantly better to use the symmetrized form
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182 Chapter 5.  Evaluation of Functions

In this case, by equation (5.7.2), the truncation errar;is- h%f"’. The roundoff
errore,. is about the same as before. The optimal choide tfy a short calculation
analogous to the one above, is how

AN
h~ (;///) ~ (Ef)l/gxc (5'7'&

and the fractional error is

(er+ee/[f'] ~ ()22 S~ (ep)?)? (5.7.9

which will typically be an order of magnitude (single precision) or two orders of
magnitude (double precisiohgtter than equation (5.7.6). We have arrived at Lesson
2: Choosé to bethe correct power ofe ¢ or €, times a characteristic scate.

You can easily derive the correct powers for other céled-or a function of
two dimensions, for example, and the mixed derivative formula

82f — [f(l’+h7y+h)—f(l'+h7y—h)]—[f(ilj—h,y-i-h)—f(l’—h,y—h)}
0xdy 4h?

(5.7.10
the correct scaling ig ~ e}“wc.

It is disappointing, certainly, that no simple finite-difference formula like
equation (5.7.1) or (5.7.7) gives an accuracy comparable to the machine accpracy
or even the lower accuracy to whighs evaluateds ;. Are there no better methods?

Yes, there are. All, however, involve exploration of the function’s behavior over 2
scales comparable tq., plus some assumption of smoothness, or analyticity, so that =
the high-order terms in a Taylor expansion like equation (5.7.2) have some meanings.
Such methods also involve multiple evaluations of the funcfipso their increased
accuracy must be weighed against increased cost.

The general idea of “Richardson’s deferred approach to the limit” is particularly
attractive. For numerical integrals, that idea leads to so-called Romberg integratio
(for review, se&4.3). For derivatives, one seeks to extrapolaté, te 0, the result
of finite-difference calculations with smaller and smaller finite valuek.oBy the
use of Neville’s algorithm§3.1), one uses each new finite-difference calculation to
produce both an extrapolation of higher order, and also extrapolations of previous
lower, orders but with smaller scalés Ridders[2] has given a nice implementation
of this idea; the following prograndfridr, is based on his algorithm, modified by
an improved termination criterion. Input to the routine is a funciiqoalledfunc),

a positionz, and alargest stepsizeh (more analogous to what we have called
above than to what we have callejl Output is the returned value of the derivative,
and an estimate of its errogrr.
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FUNCTION dfridr(func,x,h,err)

INTEGER NTAB

REAL dfridr,err,h,x,func,CON,CON2,BIG,SAFE

PARAMETER (CON=1.4,CON2=CON*CON,BIG=1.E30,NTAB=10,SAFE=2.)

EXTERNAL func

C USES func

Returns the derivative of a function func at a point x by Ridders’ method of polynomial
extrapolation. The value h is input as an estimated initial stepsize; it need not be small,
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5.7 Numerical Derivatives 183

but rather should be an increment in x over which func changes substantially. An estimate
of the error in the derivative is returned as err.
Parameters: Stepsize is decreased by CON at each iteration. Max size of tableau is set by
NTAB. Return when error is SAFE worse than the best so far.

INTEGER 1i,j

REAL errt,fac,hh,a(NTAB,NTAB)

if(h.eq.0.) pause ’h must be nonzero in dfridr’

hh=h
a(1,1)=(func (x+hh)-func (x-hh)) /(2. 0%hh) Z
err=BIG =
do 12 i=2,NTAB Successive columns in the Neville tableau will go to smaller %
hh=hh/CON stepsizes and higher orders of extrapolation. P
a(1,i)=(func(x+hh)-func(x-hh))/(2.0%hh) Try new, smaller stepsize. a
fac=CON2 E)
dou j=2,i Compute extrapolations of various orders, requiring no new =)
a(j,i)=(a(j-1,i)*fac-a(j-1,i-1))/(fac-1.) function evaluations. 2
fac=CON2#*fac =
errt=max(abs(a(j,i)-a(j-1,i)),abs(a(j,i)-a(j-1,i-1))) g
The error strategy is to compare each new extrapolation to one order lower, both at g
the present stepsize and the previous one. N]
if (errt.le.err) then If error is decreased, save the improved answer. IB‘
err=errt N
dfridr=a(j,1i) >
endif =]
enddo 11 ;
if(abs(a(i,i)-a(i-1,i-1)).ge.SAFExerr)return 3
If higher order is worse by a significant factor SAFE, then quit early. %
enddo 12 g
return 2
END =
o
»
2
In dfridr, the number of evaluations ¢finc is typically 6 to 12, but is allowed g
to be as great as>XAITAB. As a function of input, it is typical for the accuracy &
to getbetter ash is made larger, until a sudden point is reached where nonsensicalz.

J]]

extrapolation produces early return with a large error. You should therefore choos
a fairly large value foh, but monitor the returned valuerr, decreasing if it is

not small. For functions whose characteristiscale is of order unity, we typically
take h to be a few tenths.

Besides Ridders’ method, there are other possible techniques. If your function
is fairly smooth, and you know that you will want to evaluate its derivative many
times at arbitrary points in some interval, then it makes sense to construct
Chebyshev polynomial approximation to the function in that interval, and to evaluate
the derivative directly from the resulting Chebyshev coefficients. This method is
described in§§5.8-5.9, following.

Another technique applies when the function consists of data that is tabulate
at equally spaced intervals, and perhaps also noisy. One might then want, at ea
point, to least-squarefit a polynomial of some degre&/, using an additional
numbern, of points to the left and some numbey, of points to the right of each
desiredx value. The estimated derivative is then the derivative of the resulting
fitted polynomial. A very efficient way to do this construction is via Savitzky-Golay
smoothing filters, which will be discussed later, §h4.8. There we will give a
routine for getting filter coefficients that not only construct the fitting polynomial but,
in the accumulation of a single sum of data points times filter coefficients, evaluate
it as well. In fact, the routine giversavgol, has an argumenid that determines
which derivative of the fitted polynomial is evaluated. For the first derivative, the
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appropriate setting i¥d=1, and the value of the derivative is the accumulated sum

divided by the sampling intervalt.

CITED REFERENCES AND FURTHER READING:

Dennis, J.E., and Schnabel, R.B. 1983, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Englewood Cliffs, NJ: Prentice-Hall), §§5.4-5.6. [1]

Ridders, C.J.F. 1982, Advances in Engineering Software, vol. 4, no. 2, pp. 75-76. [2]

5.8 Chebyshev Approximation

The Chebyshev polynomial of degreeis denoted?’,(z), and is given by

the explicit formula

T,.(z) = cos(n arccosr)

This may look trigonometric at first glance (and there is in fact a close relation
between the Chebyshev polynomials and the discrete Fourier transform); howeveg
(5.8.1) can be combined with trigonometric identities to yield explicit expressions

for T,(x) (see Figure 5.8.1),

Tot1(x) = 22T () — Th1 ()

(5.8.1

(5.8.2

n>1.

(There also exist inverse formulas for the powers:af terms of theT','s — see

equations 5.11.2-5.11.3.)

The Chebyshev polynomials are orthogonal in the intgrval 1] over a weight

(1 —22)~'/2, In particular,

'@, f°
/_1 o BT {”/ 2

™

The polynomiall’, (x) hasn zeros in the intervdl-1, 1], and they are located

at the points

i # ]
i=j#0 (5.8.3
i=j=0

,2,...,m (5.8.9
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